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Distributed Containment Control of Multi-agent Systems with General
Linear Dynamics and Time-delays
Bo Li*, Hong-Yong Yang, Zeng-Qiang Chen, and Zhong-Xin Liu

Abstract: Containment control problems for high-order linear time-invariant multi-agent systems with fixed com-
munication time-delays are investigated. Based on Lyapunov-Krasovskii functional method and the linear matrix
inequality (LMI) method, sufcient conditions on the communication digraph, the feedback gains, and the allowed
upper bound of the delays to ensure containment control of the multi-agent systems under the different containment
control algorithms are given. Finally, numerical simulations are presented to demonstrate theoretical results.
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1. INTRODUCTION

Enlightened by cooperative behaviors in nature, the co-
operative control problems have attracted more and more
attentions. Recently, more and more researchers are in-
terested in distributed coordination control of multi-agent
systems, due to its wide range of applications, such as for-
mation flying of UAVs, and autonomous underwater ve-
hicles. An important feature in distributed cooperative
control of multiple agents is that each agent updates its
own state based on the information from itself and its lo-
cal neighbors. Therefore, the consensus is one of the key
fundamental problem. The study of consensus algorithms
can be dated back to Reynolds [1], Vicsek [2] and Jad-
babaie [3]. Detailed information about the recent study of
consensus algorithms in cooperative control can be found
in Moreau [4] and Ren, Beard [5]. From the perspective of
presence and absence of leader(s), the existing investiga-
tion about the multi-agent consensus topic can be classied
into two subareas. One is the leaderless consensus where
leaders are not existent [4–9], and the other subarea is the
leader-following consensus [10–12], in which either a sin-
gle leader or several leaders could be existent. Generally,
in the case of multiple leaders, the corresponding problem
is called the containment problem, referring to the sce-
nario that the followers will all go asymptotically into the
convex hull spanned by the(stationary or dynamic)leaders
according to properly designed protocol/algorithm. The
initial study of containment can be found in Ji [13]. Many
papers have studied the containment control during the
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next years. In [14], necessary and sufficient conditions
for containment control of networked multi-agent systems
were given. Cao et al. [15] gave the necessary and suf-
ficient conditions for the containment control of multi-
agent systems with both stationary and dynamic leaders
under fixed and switching directed topology. Yang et
al. [16] investigated the containment control of heteroge-
neous fractional-order multi-agent systems. The output
containment control problem of multi-agent systems with
general linear dynamics was investigated in [17].

In practical multi-agent systems, the delays exist be-
cause some reasons. Since the delays may degrade a
systems performance or even destroy a systems stabil-
ity, the investigations have been extensively conducted in
this direction [18–21]. When the delays are constant, the
frequency-domain approach has been used to give the con-
sensus conditions [20, 21]. The single leader case and/or
the leaderless case have been considered in these works.
In the study of the containment control problem, some
works had been done for the multi-agent systems with de-
lays. The formation containment and containment con-
trol problem of the second-order multi-agent systems with
time-varying delay was investigated in [22, 23], respec-
tively.

Motivated by the above analysis and note that in some
applications, the dynamics of the agents are complicated,
and can not be modeled by single or double integrator
dynamics. So after our preliminary work [24–26] about
containment control of continuous-time, discrete-time and
nonlinear multi-agent system with fixed communication
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time-delays, in this paper, we consider the containment
control problem for general linear multi-agent systems
with time-delays. Using two containment control algo-
rithms, the case with multiple dynamic leaders is inves-
tigated. Sufficient conditions on the communication di-
graph, the feedback gains, and the time-delays to ensure
containment control are given.

Compared with the existing works on containment, the
novel features of the current paper are twofold. Firstly, the
LyapunovKrasovskii functional method and the linear ma-
trix inequality (LMI) method are jointly used. In [27], dis-
tributed containment problems were studied, where there
do not consider communication time-delays. Secondly,
the maximal allowed in LMI can be obtained from the op-
timization problem that can be solved by using the GEVP
solver in Matlabs LMI Toolbox. The paper is organized
as follows. In Section 2, we give some basic concepts in
graph theory and some relative lemmas. In Section 3, the
model is described and the containment control problem
of multi-agent system with fixed time-delays is investi-
gated for general linear systems respectively. Numerical
simulations and conclusion are given in Sections 4 and 5,
respectively.

The following notations are used throughout this paper.
The notation diag(ω1,ω2, ...,ωn) denotes a diagonal ma-
trix whose diagonal entries are and the notation AT de-
notes the transpose of matrix A. Matrices, if their dimen-
sions are not explicitly stated, are assumed to be compat-
ible for algebraic operations. The notation P > 0 (≥ 0)
means that P is a real symmetric positive (semi-positive)
definite matrix. I and 0 represent, respectively, the identity
matrix and zero matrix. The set of real numbers is denoted
by R. The set of real-valued vectors of length m is given
by Rm. The set of real-valued m× n matrices is given by
Rm×n, and ⊗ denotes Kronecker product.

2. PROBLEM FORMULATIONS AND
PRELIMINARIES

Let G(VVV ,ε,A) be a directed graph of order n, with the
set of nodes VVV = {v1, v2, ..., vn}, and the set of directed
edges ε ⊆V ×V , and a adjacency matrix A = [ai j] ∈Rn×n

with nonnegative adjacency elements ai j. A directed edge
εi j in G is denoted by the ordered pair of node (v j,vi),
where vi is defined as the parent node and v j is defined
as the child node, which means that node v j can receive
information from node vi.The adjacency elements associ-
ated with the edges are positive, that is, εi j ∈ ε ⇔ ai j > 0.
Moreover, we assume aii = 0 for all vi ∈V . In this paper,
we use Ni(t) to denote the neighbor set of agent i at the
time t. Correspondingly, we defined the Laplacian matrix
L = [li j] ∈ Rn×nof the directed graph as [28]

li j =


n

∑
j=1

ai j, i = j,

−ai j, i ̸= j.

Consider a group of n agents. Suppose that each agent
has the general linear dynamics described by{

ẋi(t) = Axi(t)+Bui(t),

yi(t) = Cxi(t),
(1)

where xi(t) ∈ Rr, yi(t) ∈ Rq and ui(t) ∈ Rp are the state,
the measured output and control input of agent i at time t,
respectively.

For the n-agent system, an agent is called a leader if the
agent has no neighbor. An agent is called a follower if
the agent has a neighbor. Assume that there are m leaders,
where m < n, andn−m followers. In this paper, we use
ℜ and F to denote, respectively, the leader set and the
follower set. Without loss of generality, we assume that
agents 1 to n−m (m < n) are followers and agents n−
m+ 1 to n are leaders. Accordingly, L can be partitioned
as

L =

[
L1 L2

0m×(n−m) 0m×m

]
,

where L1 ∈ R(n−m)×(n−m) and L2 ∈ R(n−m)×m.
Definition 1 [29]: Let Q be a set in a real vector space

W ⊆ Rn. The set Q is called convex if, for any x̃ and ỹ in
Q, the point (1−θ)x̃+θ ỹ is in Q for any θ ∈ [0,1]. The
convex hull for a set of points X̃ = {x̃1, x̃2, ..., x̃n} in W is
the minimal convex set containing all points in X̃. We use
Co(X̃) to denote the convex hull of X̃ . In particular,

Co(X̃) =

{
n

∑
i=1

aix̃i|x̃i ∈ X̃,ai ∈ Rn ≥ 0,
n

∑
i=1

ai = 1

}
.

Definition 2 [30]: The containment control is achieved
for the system (1) under a certain control input if the states
of the followers asymptotically converge to the convex
hull formed by those of the leaders.

Assumption 1 [15]: For each follower, there exists at
least one leader that has a directed path to the follower.

Lemma 1 [15]: Assume the communication digraph
G has a directed spanning forest(same as Assumption 1
is satisfied). Then, all the eigenvalues of L1 have positive
real parts, each element of −L−1

1 L2is nonnegative, and the
sum of each row of −L−1

1 L2 is 1.
From Lemma 1, we know that L1 is invertible and all

eigenvalues of L1 have positive real parts and not equal to
0.

Lemma 2 [31]: Given a positive definite matrix M ∈
Rn×n, two constants γ1 and γ2 satisfying γ1 < γ2, and a
vector function ω : [γ1,γ2]→Rn such that the integrations
concerned are well defined, the following inequality holds(∫ γ2

γ1

ω(s)ds
)T

M
(∫ γ2

γ1

ω(s)ds
)

≤ (γ2 − γ1)

(∫ γ2

γ1

ωT(s)Mω(s)ds
)
.
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3. MAIN RESULTS

3.1. Containment control of general linear multi-
agent systems with communication time-delays

Here we consider the containment control protocol as fol-
lows:

ui(t) =


0, i ∈ ℜ,

−K ∑
j∈Ni(t)

ai j[(x j(t − τ)− xi(t − τ)], i ∈ F .

(2)

Then the closed-loop system using (2) for (1) can be
written as follows:{

ẊXXF(t) = (In−m ⊗A)XXXF(t)+(L⊗BK)XXX(t − τ),
ẊXXL(t) = (Im ⊗A)XXXL(t),

(3)

where XXXF(k) = [x1(k) x2(k) ... xn−m(k)]T, XXXL(k) =
[xn−m+1(k) ... xn(k)]T.

We define containment error function as

EEE(t) = XF(t)+(L−1
1 L2 ⊗ Im)XXXL(t).

Then we have

ĖEE(t) =ẊXXF(t)+(L−1
1 L2 ⊗ Im)ẊXXL(t)

=(In−m ⊗A)XXXF(t)+(L1 ⊗BK)XXXF(t − τ)
+(L2 ⊗BK)XXXL(t − τ)
+(L−1

1 L2 ⊗ Im)(In−m ⊗A)XXXL(t)

=(In−m ⊗A)XXXF(t)+(L1 ⊗BK)XXXF(t − τ)
+(L2 ⊗BK)XXXL(t − τ)+(L−1

1 L2 ⊗A)XXXL(t)

=(In−m ⊗A)[XXXF(t)+(L−1
1 L2 ⊗ Im)XXXL(t)]

+(L1 ⊗BK)[XXXF(t − τ)
+(L−1

1 L2 ⊗ Im)XXXL(t − τ)]
=(In−m ⊗A)EEE(t)+(L1 ⊗BK)EEE(t − τ).

The above equation can be rewritten as follows:

ĖEE(t) = GEEE(t)+HEEE(t − τ),

where G = (In−m ⊗A) and H = (L1 ⊗BK).
Lemma 3: Suppose that (A, B) is stabilizable, (A, C) is

detectable, and Assumption 1 holds. Then the matrix all
G+H is Hurwitz if and only if the matrix A+ λkBK is
Hurwitz, where λk (k = 1, 2, ..., n−m) is the eigenvalues
of L1.

Proof: It is clear that

G+H = In−m ⊗A+L1 ⊗BK.

Because that the matrix L1 is invertible, so there is a
positive matrix T satisfying TL1T−1 = diag(λ1, λ2, ...,
λn−m).

Multiplying both sides of the above equation with (T⊗
In−m) and (T⊗ In−m)

−1 leads to

(T⊗ In−m)(G+H)(T⊗ In−m)
−1

= (T⊗ In−m)(In−m ⊗A+L1 ⊗BK)(T⊗ In−m)
−1

= In−m ⊗A+TL1T−1 ⊗BK
= In−m ⊗A+diag(λ1,λ2, ...,λn−m)⊗BK.

The proof is completed. □
Suppose that (A, B) is stabilizable, (A, C) is detectable,

and Assumption 1 holds. How to get K leads to the matrix
A+λkBK is Hurwitz that had been investigated in many
papers. In this paper, we use the algorithm as follows:

K =−max
{

1,
1

min(Re(λk)

}
BTP,

where P is the positive solution of the following algebraic
Riccati equations:

PA+ATP+ In −PBBTP = 0.

Theorem 1: Suppose that (A, B) is stabilizable, (A,
C) is detectable and Assumption 1 holds. Protocol (2)
asymptotically solves the containment control problem for
system (1) with time-delays, if all matrices A+λkBK are
Hurwitz and there exists positive definite matrix P, R and
τ satisfying

E2 + τ2F2 < 0, (4)

where

E2 =

[
PΦΦΦT +ΦΦΦP −PH
−HTP −R

]
,

F2 =

[
ΦΦΦT

−HT

]
R
[

ΦΦΦ −H
]
.

Proof: Consider the following Lyapunov function can-
didate

VVV (t) =EEET(t)PEEE(t)+ τ
∫ t

t−τ
(s− t + τ)ĖEET

(s)RĖEE(s)ds,

(5)

where P, R are positive definite matrices, τ is a positive
fixed time-delay, respectively. The time derivative of this
Lyapunov candidate along the trajectory of system (1) is

V̇VV (t) =2EEET(t)PĖEE(t)− τ
∫ t

t−τ
ĖEET

(s)RĖEE(s)ds

+ τ2ĖEET
(t)RĖEE(t)

=2EEET(t)P[GEEE(t)+HEEE(t − τ)]

− τ
∫ t

t−τ
ĖEET

(s)RĖEE(s)ds

+ τ2[GEEE(t)+HEEE(t − τ)]T
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×R[GEEE(t)+HEEE(t − τ)]. (6)

We define ĒEE(t) = EEE(t)−EEE(t − τ) and ΦΦΦ = G+H, then
(6) can be rewritten as

V̇VV (t) =2EEET(t)P[ΦΦΦEEE(t)−HĒEE(t)]

− τ
∫ t

t−τ
ĖEET

(s)RĖEE(s)ds

+ τ2[ΦΦΦEEE(t)−HĒEE(t)]TR[ΦΦΦEEE(t)−HĒEE(t)]

=2EEET(t)PΦΦΦEEE(t)−2EEET(t)PHĒEE(t)

− τ
∫ t

t−τ
ĖEET

(s)RĖEE(s)ds

+ τ2[ΦΦΦEEE(t)−HĒEE(t)]TR[ΦΦΦEEE(t)−HĒEE(t)].
(7)

By Lemma 2,

ĒEET
(t)RĒEE(t)≤ τ

∫ t

t−τ
ĖEET

(s)RĖEE(s)ds.

It follows that

V̇VV (t)≤
[

EEE(t)
ĒEE(t)

]T([ PΦΦΦT +ΦΦΦP −PH
−HTP −R

]
+ τ2

[
ΦΦΦT

−HT

]
R
[

ΦΦΦ −H
])[

EEE(t)
ĒEE(t)

]
.

(8)

In view of (4), we know V̇VV (t) < 0, which implies that
lim
t→∞

EEE(t) = 0, that is, the containment control of system (1)
under protocol (2) is achieved. The proof is completed. □

Remark 1: It is clear that F2 ≥ 0 and γτ2 > 0. So (11)
maybe hold only when the E2 < 0 holds. And (4) can hold
when τ is sufficiently close to zero if E2 < 0 holds.

Remark 2: By the Schur complement theorem, the
condition that E2 < 0 holds if and only if ΩΩΩ < 0 holds.
The condition that ΩΩΩ < 0 holds only when PΦΦΦT +ΦΦΦP < 0
holds. So it is worth pointing out that a necessary condi-
tion for (4) is that Assumption 1 holds. If Assumption 1
does not hold, L1 must have at least one zero eigenvalue
and yields a contradiction.

Remark 3: In this paper, all agents are assumed to be
the same, output containment control of linear heteroge-
neous multi-agent systems have been investigated in [32].
When the communication time-delay between agents is
varying and the condition 0 < τ(t) ≤ τd holds, the fixed
time-delay τ will be replaced with the upper bound of the
varying time-delay τd in (4). Furthermore, heterogeneous
delay problems are difficult to be handled in multi-agent
systems, containment control problems for general linear
multi-agent systems with heterogeneous delays are still
open.

3.2. Containment control of general linear multi-
agent systems with observer-based protocols

In this section, a cooperative dynamic regulator is pro-
posed that uses only the neighbors’ output measurements

of each agent. Here we propose the following containment
control protocol:

ui(t) =


0, i ∈ ℜ,

K ∑
j∈Ni(t)

ai j[(x̂i(t − τ)− x̂ j(t − τ)], i ∈ F ,

(9)

where x̂i(t) is the estimate of the state xi(t). And it is
defined as follows:

˙̂xi(t) =Ax̂i(t)+Bui(t)

+FC ∑
j∈Ni(t)

ai j((x̂i(t − τ)− x̂ j(t − τ))

−F ∑
j∈Ni(t)

ai j((yi(t − τ)− y j(t − τ)). (10)

Under protocol (9), the multi-agent system (1) can be writ-
ten in a compact form as follows:

ẋi(t) =


Axi(t), i ∈ ℜ
Axi(t)

+BK ∑
j∈Ni(t)

ai j[(x̂i(t − τ)− x̂ j(t − τ)], i ∈ F .

(11)

We define the state estimation error for agent i

ei = x̂i(t)− xi(t). (12)

Then for the followers, we have

ėi(t) = ˙̂xi(t)− ẋi(t)

=Ax̂i(t)+Bui(t)

+FC ∑
j∈Ni(t)

ai j((x̂i(t − τ)− x̂ j(t − τ))

−F ∑
j∈Ni(t)

ai j

(
(yi(t − τ)− y j(t − τ))

−Axi(t)−Bui(t)
)

=Aei(t)+FC ∑
j∈Ni(t)

ai j((ei(t − τ)− e j(t − τ)),

i ∈ F, (13)

and for the leaders, we have

˙̂xi(t) = Ax̂i(t) ⇒ ei(t) = 0, i ∈ ℜ (14)

We define{
eL(t) = [e1(t)T,e2(t)T, ...,em(t)T]T,

eF(t) = [em+1(t)T,em+2(t)T, ...,en(t)T]T.

Further, we have

eL(t) = 0,

ėF(t) = (In−m ⊗A)eF(t)+(L⊗FC)e(t − τ)
= (In−m ⊗A)eF(t)+(L1 ⊗FC)eF(t − τ)
+(L2 ⊗FC)eL(t − τ)

= (In−m ⊗A)eF(t)+(L1 ⊗FC)eF(t − τ).
(15)
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Then (11) can be rewritten

ẋi(t) =Axi(t)+BK ∑
j∈Ni(t)

ai j[(ei(t − τ)− e j(t − τ)]

+BK ∑
j∈Ni(t)

ai j[(xi(t − τ)− x j(t − τ)]

=Axi(t)+BKLe(t − τ)+BKLX(t − τ). (16)

From (1) and protocol (9), the closed-loop networked dy-
namics can be written as

ẊXXF(t) =(In−m ⊗A)XXXF(t)+(L1 ⊗BK)XXXF(t − τ)
+(L2 ⊗BK)XXXL(t − τ)+(L1 ⊗BK)eF(t − τ)
+(L2 ⊗BK)eL(t − τ)

=(In−m ⊗A)XXXF(t)+(L1 ⊗BK)XXXF(t − τ)
+(L2 ⊗BK)XXXL(t−τ)+(L1 ⊗BK)eF(t−τ).

(17)

Here we use the same definition of containment error
function

EEE(t) =XXXF(t)+(L−1
1 L2 ⊗ Im)XXXL(t).

Then, we have

ĖEE(t) =Ẋ̇ẊXF(t)+(L−1
1 L2 ⊗ Im)ẊXXL(t)

=(In−m ⊗A)XXXF(t)+(L1 ⊗BK)XXXF(t − τ)
+(L2 ⊗BK)XXXL(t − τ)+(L1 ⊗BK)eF(t − τ)
+(L−1

1 L2 ⊗ Im)(In−m ⊗A)XL(t)

=(In−m ⊗A)XXXF(t)+(L1 ⊗BK)XXXF(t − τ)
+(L2 ⊗BK)XXXL(t − τ)+(L−1

1 L2 ⊗A)XXXL(t)

+(L1 ⊗BK)eF(t − τ)
=(In−m ⊗A)[XXXF(t)+(L−1

1 L2 ⊗ Im)XXXL(t)]

+(L1⊗BK)[XXXF(t−τ)+(L−1
1 L2⊗Im)XXXL(t−τ)]

+(L1 ⊗BK)eF(t − τ)
=(In−m ⊗A)EEE(t)+(L1 ⊗BK)EEE(t − τ)
+(L1 ⊗BK)eF(t − τ). (18)

Equation (18) can be written

ĖEE(t) =(In−m ⊗A)EEE(t)+(L1 ⊗BK)EEE(t − τ)
+(L1 ⊗BK)eF(t − τ). (19)

Then, multi-agent system (11) can be rewritten as follows:[
ĖEE(t)
ėF(t)

]
=In−m ⊗

[
A 0
0 A

][
EEE(t)
eF(t)

]
+

[
L1 ⊗BK L1 ⊗BK

0 L1 ⊗FC

][
EEE(t − τ)
eF(t − τ)

]
.

(20)

We define

χχχ(t) =
[

EEE(t)
eF(t)

]
, ϒ = In−m ⊗

[
A 0
0 A

]
,

ΞΞΞ =

[
L1 ⊗BK L1 ⊗BK

0 L1 ⊗FC

]
.

Equation (20) can be rewritten

χ̇χχ(t) = ϒχχχ(t)+ΞΞΞχχχ(t − τ). (21)

Theorem 2: Suppose that (A, B) is stabilizable, (A, C)
is detectable and Assumption 1 holds. Protocol (9) asymp-
totically solves the containment control problem for sys-
tem (1) with time-delays, if all matrices A+ λkBK and
A+ λkFC are Hurwitz, and there exists positive de?nite
matrix P, R and τ satisfying

Ẽ2 + τ2F̃2 < 0, (22)

where

Ẽ2 =

[
PΦ̃ΦΦT

+Φ̃ΦΦP −PΞΞΞ
−ΞΞΞTP −R

]
,

F̃2 =

[
Φ̃ΦΦT

−ΞΞΞT

]
R
[

Φ̃ΦΦ −ΞΞΞ
]
,

Φ̃ΦΦ =ΞΞΞ+ϒ.

The proof procedure is basically the same as what had
been done in Theorem 1. In order to avoid duplication, it
is omitted.

Remark 4: We use the following algorithm to get ma-
trix F that can satisfy A+λkFC is Hurwitz.

F =−max
{

1,
1

min(Re(λk)

}
PCT,

where P is the positive solution of the following algebraic
Riccati equations:

PA+ATP+ In −PCTCP = 0.

4. NUMERRICAL SIMULATIONS

In this section, we present several simulation results to
validate the previous theoretical results. We consider a
group of agents with 4 leaders and 4 followers. When the
directed graph Gis fixed as in Fig. 1, it can be noted that
Assumption 1 is satisfied.

Fig. 1. Fixed directed network topology.
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Example 1: Assume that

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0

]
.

By using Matlab Riccati Toolbox, we can get that

P1 =

[
13.4102 5.2745
5.27450 4.5425

]
,

K =
[

6.4222 5.5309
]
.

Solving the LMIs(4) by using the GEVP solver in Matlabs
LMI Toolbox, we can get τ and τop = 0.0335.

P =1.0e−007

∗



0.4013 0.1580 0.2511 0.1064 0.4013
0.1580 0.1267 0.1061 0.0833 0.1580
0.2511 0.1061 0.3801 0.1475 0.2511
0.1064 0.0833 0.1475 0.1166 0.1064
0.4013 0.1580 0.2511 0.1064 0.4013
0.1580 0.1267 0.1061 0.0833 0.1580
0.2511 0.1061 0.3801 0.1475 0.2511
0.1064 0.0833 0.1475 0.1166 0.1064

0.1580 0.2511 0.1064
0.1267 0.1061 0.0833
0.1061 0.3801 0.1475
0.0833 0.1475 0.1166
0.1580 0.2511 0.1064
0.1267 0.1061 0.0833
0.1061 0.3801 0.1475
0.0833 0.1475 0.1166


,

R =1.0e−006

∗



0.2407 −0.0230 0.1030 −0.0404
−0.0230 0.2858 −0.0253 0.1350
0.1030 −0.0253 0.2422 −0.0303
−0.0404 0.1350 −0.0303 0.2805
0.2407 −0.0230 0.1030 −0.0404
−0.0230 0.2858 −0.0253 0.1350
0.1030 −0.0253 0.2422 −0.0303
−0.0404 0.1350 −0.0303 0.2805

0.2407 −0.0230 0.1030 −0.0404
−0.0230 0.2858 −0.0253 0.1350
0.1030 −0.0253 0.2422 −0.0303
−0.0404 0.1350 −0.0303 0.2805
0.2407 −0.0230 0.1030 −0.0404
−0.0230 0.2858 −0.0253 0.1350
0.1030 −0.0253 0.2422 −0.0303
−0.0404 0.1350 −0.0303 0.2805


.

The simulation result using (2) for (1) is shown in Figs. 2-
4 when τ = 0.03, τ = 0.08, respectively.

We can see that states x1, x2 of all followers ultimately
converge to the convex hull formed by the dynamic lead-
ers when the time-delays τ = 0.03. However, it fails to
converge when the time-delays τ = 0.08.

Fig. 2. State x1 error trajectories of system (1) (τ = 0.03).

Fig. 3. State x2 trajectories of system (1) (τ = 0.03).

Fig. 4. State x1 trajectories of system (1) (τ = 0.08).
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Fig. 5. State x1 error trajectories of system (1) (τ = 0.05).

Fig. 6. State x2 trajectories of system (1) (τ = 0.05).

Fig. 7. State x3 trajectories of system (1) (τ = 0.05).

Example 2: Assume that

A =

 0 1 0
−1 0 0
0 1 0

 , B =

0
1
1

 , C =

[
1 0 1
0 1 0

]
.

By using Matlab Riccati Toolbox, we can get that

P1 = 1.0e+007∗

 6.7330 −0.0000 −6.7330
−0.0000 0.0000 0.0000
−6.7330 0.0000 6.7330

 .

We can obtain K =−[0.2999 1.1447 1.0000] and

F =

 −2.6742 0.7980
−0.3030 −3.2751
−1.3371 −1.1010

 .

Solving the LMIs(22) by using the GEVP solver in
Matlabs LMI Toolbox, we can get

alpha = 312.8883 ⇒ τop = 0.0565.

The simulation result using protocol (7) for system (1)
is shown in Fig. 5, Fig. 6, and Fig. 7 respectively. We
can see that all states x1, x2, x3 of all followers ultimately
converge to the convex hull formed by the dynamic leaders
when the time-delay τ = 0.05.

5. CONCLUSION

This paper studied the distributed containment con-
trol problem of multi-agent systems with general lin-
ear dynamic and fixed communication time-delays under
fixed directed network topologies. Two kind of different
containment control protocol considering communication
time-delays are investigated. We showed sufficient con-
ditions on the directed network topology and time-delay
to guarantee distributed containment control. In this pa-
per, consensus-based approaches were used to transform
containment control problems into the asymptotic stabil-
ity problems and a Lyapunov-Krasovskii functional ap-
proach was used to analyze the stability problems. This
method can also be applied to the formation or formation-
containment investigation results for the multi-agent sys-
tems with time-delays.

There are still a number of related interesting prob-
lems deserving further investigation. Containment control
problems for heterogeneous multi-agent systems or multi-
agent systems with varying time-delays will be discussed
in our future work. Meanwhile, it is desirable to study co-
operative containment control of linear multi-agent with
sampled data.
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